Some identities involving multiplicative generalized derivations in orime and semiprime rings
نویسندگان
چکیده
منابع مشابه
Left Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملLie Ideals and Generalized Derivations in Semiprime Rings
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
متن کاملOn Generalized Derivations of Semiprime Rings
Let F be a commuting generalized derivation, with associated derivation d, on a semiprime ring R. We show that d(x)[y, z] = 0 for all x, y, z ∈ R and d is central. We define and characterize dependent elements of F and investigate a decomposition of R relative to F . Mathematics Subject Classification: 16N60, 16W25
متن کاملIdentities with derivations and automorphisms on semiprime rings
The purpose of this paper is to investigate identities with derivations and automorphisms on semiprime rings. A classical result of Posner states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. Mayne proved that in case there exists a nontrivial centralizing automorphism on a prime ring, then the ring is commutative. In this paper, some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v36i1.30822